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The literature abounds with technical information to locate the sweet spot in an unconventional
asset, but the inverse concept has been largely neglected. This is usually attributed to the lack of
suitable tools and interpretive expertise. The wellsite mass spectrometer is an exception to this
generalization when the raw data is suitably utilized in comprehensive interpretive schemes. This
is accomplished in data analytic deconvolution of the collective mass spectra signal to determine
hydrocarbon and non-hydrocarbon composition during real time in the drilling mud system.
Critical "bittersweet" components include the influx of water, inorganic dilutant (e.g., hydrogen
sulfide, carbon dioxide), leaky top seals, and the potential for depleted compartments. The
individual wellbore mass spec data is post-processed to provide visualization of the key
parameters that are particularly insightful when the full gambit of well bores are viewed
simultaneously in 3D. This includes the systematic influx to the wellbore of a particular
bittersweet component, such as water via fractures and/or faults. The method is likewise
extended to the predictive realm as prior wells can be used to build a predictive 3D model by
taking advantage of the interchangeable format of data manipulation from fluid inclusion
stratigraphic (i.e., FIS) analysis. This approach is effective at resolving the under-utilized field
data conundrum by providing a platform for the proper alignment of people, processes, and
technologies to provide the answers to issues like well spacing in asset management.
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